login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A025755 10th order Patalan numbers (generalization of Catalan numbers). 2
1, 1, 45, 2850, 206625, 16116750, 1316201250, 110936962500, 9568313015625, 839885253593750, 74749787569843750, 6727480881285937500, 611079513383472656250, 55937278532794804687500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.

T. M. Richardson, The Super Patalan Numbers, arXiv preprint arXiv:1410.5880, 2014 and J. Int. Seq. 18 (2015) # 15.3.3

FORMULA

G.f.: (11-(1-100*x)^(1/10))/10.

a(n) = 10^(n-1)*9*A035278(n-1)/n!, n >= 2; 9*A035278(n-1)= (10*n-11)(!^10) = product(10*j-11, j=2..n). - Wolfdieter Lang

Conjecture: n*a(n) +10*(-10*n+11)*a(n-1)=0. - R. J. Mathar, Jul 28 2014

a(n) = 100^(n-1)*pochhammer(9/10, n-1)/n! for n >= 1.  Maple confirms this satisfies Mathar's conjecture for n >= 2 (it's not true for n=1). - Robert Israel, Oct 05 2014

MATHEMATICA

CoefficientList[Series[(11 -(1 - 100*x)^(1/10))/10, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)

CROSSREFS

Sequence in context: A035097 A184286 A130017 * A213880 A113630 A143004

Adjacent sequences:  A025752 A025753 A025754 * A025756 A025757 A025758

KEYWORD

nonn

AUTHOR

Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 03:20 EST 2020. Contains 338632 sequences. (Running on oeis4.)