login
A025753
8th-order Patalan numbers (generalization of Catalan numbers).
3
1, 1, 28, 1120, 51520, 2555392, 132880384, 7137574912, 392566620160, 21983730728960, 1248675905404928, 71742106565083136, 4161042180774821888, 243260927491451125760, 14317643160925409116160
OFFSET
0,3
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
T. M. Richardson, The Super Patalan Numbers, arXiv preprint arXiv:1410.5880, 2014 and J. Int. Seq. 18 (2015) # 15.3.3
FORMULA
G.f.: (9-(1-64*x)^(1/9))/8.
a(n) = 8^(n-1)*7*A034975(n-1)/n!, n >= 2; 7*A034975(n-1)= (8*n-9)!^8 = Product_{j=2..n} (8*j - 9). - Wolfdieter Lang
MATHEMATICA
CoefficientList[Series[(9 - (1 - 64*x)^(1/8))/8, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
CROSSREFS
Sequence in context: A162006 A365029 A370358 * A160312 A132503 A092705
KEYWORD
nonn,easy
STATUS
approved