login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066989 a(n) = (n!)^3 * Sum_{i=1..n} 1/i^3. 14

%I #32 Jul 14 2020 21:40:08

%S 1,9,251,16280,2048824,444273984,152759224512,78340747014144,

%T 57175952894078976,57223737619918848000,76212579497951858688000,

%U 131758938842553681444864000,289584291977410916858462208000,794860754824699647616459210752000

%N a(n) = (n!)^3 * Sum_{i=1..n} 1/i^3.

%C p^2 divides a(p-1) for prime p>5. - _Alexander Adamchuk_, Jul 11 2006

%H Seiichi Manyama, <a href="/A066989/b066989.txt">Table of n, a(n) for n = 1..181</a> (terms 1..50 from T. D. Noe)

%F Recurrence: a(1) = 1, a(2) = 9, a(n+2) = (2*n+3)*(n^2+3*n+3)*a(n+1) - (n+1)^6*a(n). b(n) = n!^3 satisfies the same recurrence with the initial conditions b(1) = 1, b(2) = 8. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(1-1^6/(9-2^6/(35-3^6/(91-...-(n-1)^6/((2n-1)*(n^2-n+1)))))) for n >= 2, leading to the infinite continued fraction expansion zeta(3) = 1/(1-1^6/(9-2^6/(35-3^6/(91-...-(n-1)^6/((2n-1)*(n^2-n+1)-...))))). Compare with A001819. - _Peter Bala_, Jul 19 2008

%F a(n) ~ Zeta(3) * (2*Pi)^(3/2) * n^(3*n+3/2) / exp(3*n). - _Vaclav Kotesovec_, Aug 27 2017

%F Sum_{n>=1} a(n) * x^n / (n!)^3 = polylog(3,x) / (1 - x). - _Ilya Gutkovskiy_, Jul 14 2020

%t f[k_] := k^3; t[n_] := Table[f[k], {k, 1, n}]

%t a[n_] := SymmetricPolynomial[n - 1, t[n]]

%t Table[a[n], {n, 1, 22}] (* A066989 *)

%t (* _Clark Kimberling_, Dec 29 2011 *)

%t Table[(n!)^3 * Sum[1/i^3, {i, 1, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Aug 27 2017 *)

%Y Cf. A007408.

%Y Cf. A001819, A143003, A143004, A143005, A143006.

%Y Column k=3 of A291556.

%K nonn

%O 1,2

%A _Benoit Cloitre_, Jan 27 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 07:07 EDT 2024. Contains 371964 sequences. (Running on oeis4.)