login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075987
Numerator(1+1/prime(1)^3+ ... + 1/prime(n)^3) where prime(k) is the k-th prime.
4
1, 9, 251, 31591, 10862713, 14467532003, 31797494201591, 156248170093443583, 1071839248022015186797, 13041980716182955257968099, 318091971114753602661286869511, 9476548712979446302049526230869201
OFFSET
0,2
COMMENTS
The sum in the sequence has limit 1.1747626393. The case of reciprocal squares is in A075986.
For n>0 a(n) is the determinant of the n X n matrix with elements M[i,j] = 1+prime(i)^3 if i=j and 1 otherwise. - Alexander Adamchuk, Jul 08 2006
FORMULA
a(0) = 1; a(n) = a(n-1)*prime(n)^3+(prime(1)*...*prime(n-1))^3.
EXAMPLE
a(2) = 251 so a(3) = 251*p(3)^3 + (2*3)^3 = 251*125 + 216 = 31591.
MATHEMATICA
Table[Det[DiagonalMatrix[Table[Prime[i]^3, {i, 1, n}]]+1], {n, 1, 15}] (* Alexander Adamchuk, Jul 08 2006 *)
PROG
(PARI) a(n) = numerator(1 + sum(k=1, n, 1/prime(k)^3)); \\ Michel Marcus, May 31 2022
CROSSREFS
Sequence in context: A066989 A249593 A160501 * A135099 A073427 A303050
KEYWORD
nonn
AUTHOR
Zak Seidov, Sep 28 2002
STATUS
approved