login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303050
Number of 2n-digit decimal numbers without leading zeros where each digit appears an even number of times.
1
9, 252, 10944, 617472, 41457024, 3141499392, 259346018304, 22749987520512, 2082519895670784, 196336888097144832, 18885576885968830464, 1841197721072909156352, 181107406524439376953344, 17918621160090649673859072, 1779590652288735614991335424
OFFSET
1,1
FORMULA
a(n) = 9/10 * 1/(2^10) * (2 * 10^(2n) + 20 * 8^(2n) + 90 * 6^(2n) + 240 * 4^(2n) + 420 * 2^(2n)) (proved in the Quora answers).
G.f.: -9 *(1111680*x^4 -229888*x^3 +11424*x^2 -192*x +1) *x / ((100*x-1) *(4*x-1) *(36*x-1) *(64*x-1) *(16*x-1)). - Alois P. Heinz, Apr 17 2018
EXAMPLE
For n=1, the a(1)=9 numbers are 11, 22, 33, ..., 88, 99.
For n=2, the a(2)=252 numbers are 1001, 1010, 1100, 1111, 1122, 1212, 1221, ..., 9988, 9999.
MATHEMATICA
LinearRecurrence[{220, -16368, 489280, -5395456, 14745600}, {9, 252, 10944, 617472, 41457024}, 20] (* Paolo Xausa, Mar 10 2024 *)
CROSSREFS
Sequence in context: A075987 A135099 A073427 * A194790 A370357 A158621
KEYWORD
nonn,base,easy
AUTHOR
T. V. Raziman, Apr 17 2018
STATUS
approved