Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Nov 13 2023 09:07:42
%S 1,7,197,1549,195353,194353,66879079,533875007,14436577189,
%T 14420574181,19209787242911,19197460851911,42198121495296467,
%U 6025866788581781,6027847576222613,48209723660000029,236907853607882606477
%N Numerator of Sum_{k=1..n} (-1)^(k+1)/k^3.
%C a(n) is prime for n in A136683.
%C Lim_{n -> infinity} a(n)/A334582(n) = A197070. - _Petros Hadjicostas_, May 07 2020
%H Robert Israel, <a href="/A136675/b136675.txt">Table of n, a(n) for n = 1..768</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet eta function</a>.
%e The first few fractions are 1, 7/8, 197/216, 1549/1728, 195353/216000, 194353/216000, 66879079/74088000, 533875007/592704000, ... = a(n)/A334582(n). - _Petros Hadjicostas_, May 06 2020
%p map(numer,ListTools:-PartialSums([seq((-1)^(k+1)/k^3, k=1..100)])); # _Robert Israel_, Nov 09 2023
%t (* Program #1 *) Table[Numerator[Sum[(-1)^(k+1)/k^3, {k,1,n}]], {n,1,50}]
%t (* Program #2 *) Numerator[Accumulate[Table[(-1)^(k+1) 1/k^3, {k,50}]]] (* _Harvey P. Dale_, Feb 12 2013 *)
%o (PARI) a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^3)); \\ _Michel Marcus_, May 07 2020
%Y Cf. A001008, A007406, A007408, A007410, A058313, A099828, A103345, A119682, A120296, A136676, A136677, A136681, A136682, A136683, A136684, A136685, A136686, A197070, A334582 (denominators).
%K frac,nonn
%O 1,2
%A _Alexander Adamchuk_, Jan 16 2008