login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334582 Denominator of Sum_{k=1..n} (-1)^(k+1)/k^3. 4
1, 8, 216, 1728, 216000, 216000, 74088000, 592704000, 16003008000, 16003008000, 21300003648000, 21300003648000, 46796108014656000, 6685158287808000, 6685158287808000, 53481266302464000, 262753461344005632000, 262753461344005632000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n = 1 to n = 13, a(n) = A195506(n), but a(14) = 6685158287808000 <> 46796108014656000 = A195506(14).

Lim_{n -> infinity} A136675(n)/a(n) = A197070.

LINKS

Table of n, a(n) for n=0..17.

Wikipedia, Dirichlet eta function.

EXAMPLE

The first few fractions are 1, 7/8, 197/216, 1549/1728, 195353/216000, 194353/216000, 66879079/74088000, 533875007/592704000, ... = A136675/A334582.

MAPLE

b := proc(n) local k: add((-1)^(k + 1)/k^3, k = 1 .. n): end proc:

seq(denom(b(n)), n=1..30);

MATHEMATICA

Denominator @ Accumulate[Table[(-1)^(k + 1)/k^3, {k, 1, 18}]] (* Amiram Eldar, May 08 2020 *)

PROG

(PARI) a(n) = denominator(sum(k=1, n, (-1)^(k+1)/k^3)); \\ Michel Marcus, May 07 2020

CROSSREFS

Cf. A136675 (numerators), A195506, A197070.

Sequence in context: A163289 A060459 A007409 * A195506 A069045 A288323

Adjacent sequences:  A334579 A334580 A334581 * A334583 A334584 A334585

KEYWORD

nonn,frac

AUTHOR

Petros Hadjicostas, May 06 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 22:13 EDT 2021. Contains 346346 sequences. (Running on oeis4.)