The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195506 Denominator of Sum_{k=1..n} H(k)/k^2, where H(k) is the k-th harmonic number. 3
 1, 8, 216, 1728, 216000, 216000, 74088000, 592704000, 16003008000, 16003008000, 21300003648000, 21300003648000, 46796108014656000, 46796108014656000, 46796108014656000, 374368864117248000, 1839274229408039424000, 1839274229408039424000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Lim_{n -> infinity} (A195505(n)/a(n)) = 2*Zeta(3) [L. Euler]. For n = 1 to n = 13, a(n) = A334582(n), but a(14) = 46796108014656000 <> 6685158287808000 = A334582(14). - Petros Hadjicostas, May 06 2020 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..768 Leonhard Euler, Meditationes circa singulare serierum genus, Novi. Comm. Acad. Sci. Petropolitanae, 20 (1775), 140-186. EXAMPLE a(2) = 8 because 1 + (1 + 1/2)/2^2 = 11/8. The first few fractions are 1, 11/8, 341/216, 2953/1728, 388853/216000, 403553/216000, 142339079/74088000, 1163882707/592704000, ... = A195505/A195506. - Petros Hadjicostas, May 06 2020 MATHEMATICA s = 0; Table[s = s + HarmonicNumber[n]/n^2; Denominator[s], {n, 20}] (* T. D. Noe, Sep 20 2011 *) PROG (PARI) H(n) = sum(k=1, n, 1/k); a(n) = denominator(sum(k=1, n, H(k)/k^2)); \\ Michel Marcus, May 07 2020 CROSSREFS Cf. A002117, A195505 (numerators), A334582. Sequence in context: A060459 A007409 A334582 * A069045 A288323 A264056 Adjacent sequences:  A195503 A195504 A195505 * A195507 A195508 A195509 KEYWORD nonn,frac,easy AUTHOR Franz Vrabec, Sep 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 21:33 EDT 2021. Contains 346365 sequences. (Running on oeis4.)