login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195506
Denominator of Sum_{k=1..n} H(k)/k^2, where H(k) is the k-th harmonic number.
3
1, 8, 216, 1728, 216000, 216000, 74088000, 592704000, 16003008000, 16003008000, 21300003648000, 21300003648000, 46796108014656000, 46796108014656000, 46796108014656000, 374368864117248000, 1839274229408039424000, 1839274229408039424000
OFFSET
1,2
COMMENTS
Lim_{n -> infinity} (A195505(n)/a(n)) = 2*Zeta(3) [L. Euler].
For n = 1 to n = 13, a(n) = A334582(n), but a(14) = 46796108014656000 <> 6685158287808000 = A334582(14). - Petros Hadjicostas, May 06 2020
LINKS
Leonhard Euler, Meditationes circa singulare serierum genus, Novi. Comm. Acad. Sci. Petropolitanae, 20 (1775), 140-186.
EXAMPLE
a(2) = 8 because 1 + (1 + 1/2)/2^2 = 11/8.
The first few fractions are 1, 11/8, 341/216, 2953/1728, 388853/216000, 403553/216000, 142339079/74088000, 1163882707/592704000, ... = A195505/A195506. - Petros Hadjicostas, May 06 2020
MATHEMATICA
s = 0; Table[s = s + HarmonicNumber[n]/n^2; Denominator[s], {n, 20}] (* T. D. Noe, Sep 20 2011 *)
PROG
(PARI) H(n) = sum(k=1, n, 1/k);
a(n) = denominator(sum(k=1, n, H(k)/k^2)); \\ Michel Marcus, May 07 2020
CROSSREFS
Cf. A002117, A195505 (numerators), A334582.
Sequence in context: A060459 A007409 A334582 * A069045 A288323 A264056
KEYWORD
nonn,frac,easy
AUTHOR
Franz Vrabec, Sep 19 2011
STATUS
approved