login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144383
T(n,k) = [t^k] 1/(t^n + t + 1), square array read by ascending antidiagonals (n >= 1, k >= 0).
2
1, 1, -2, 1, -1, 4, 1, -1, 0, -8, 1, -1, 1, 1, 16, 1, -1, 1, -2, -1, -32, 1, -1, 1, -1, 3, 0, 64, 1, -1, 1, -1, 0, -4, 1, -128, 1, -1, 1, -1, 1, 1, 6, -1, 256, 1, -1, 1, -1, 1, -2, -2, -9, 0, -512, 1, -1, 1, -1, 1, -1, 3, 3, 13, 1, 1024, 1, -1, 1, -1, 1, -1, 0, -4, -3, -19, -1, -2048
OFFSET
1,3
EXAMPLE
Square array begins:
n\k | 0 1 2 3 4 5 6 7 8 9 ...
--------------------------------------------
1 | 1 -2 4 -8 16 -32 64 -128 256 -512 ...
2 | 1 -1 0 1 -1 0 1 -1 0 1 ...
3 | 1 -1 1 -2 3 -4 6 -9 13 -19 ...
4 | 1 -1 1 -1 0 1 -2 3 -3 2 ...
5 | 1 -1 1 -1 1 -2 3 -4 5 -6 ...
6 | 1 -1 1 -1 1 -1 0 1 -2 3 ...
7 | 1 -1 1 -1 1 -1 1 -2 3 -4 ...
8 | 1 -1 1 -1 1 -1 1 -1 0 1 ...
9 | 1 -1 1 -1 1 -1 1 -1 1 -2 ...
10 | 1 -1 1 -1 1 -1 1 -1 1 -1 ...
...
MATHEMATICA
f[t_, n_] = 1/(t^n + t + 1);
a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}];
Flatten[Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}]]
PROG
(Maxima) (nn : 12, kk : 50)$
gf(n) := taylor(1/(x^n + x + 1), x, 0, kk)$
T(n, k) := ratcoef(gf(n), x, k)$
create_list(T(n - k, k), n, 1, nn, k, 0, n - 1);
/* Franck Maminirina Ramaharo, Jan 18 2019 */
CROSSREFS
Sequence in context: A106246 A340660 A136674 * A205553 A178411 A257598
KEYWORD
sign,easy,tabl
AUTHOR
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 21 2019
STATUS
approved