login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178411
a(1)=2, a(2)=1; for n>=3, a(n) is defined by recursion: Sum_{d|n}((-1)^(n/d))*a(d) = -1.
2
2, 1, -1, 4, -1, 1, -1, 8, 0, 1, -1, 0, -1, 1, 1, 16, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 32, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 64, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0, 1, -1, 0, 1, 1, 1, 0, -1, 0, 1, 0, 1, 1, 1, 0, -1, 0, 0, 0, -1, -1, -1, 0, -1
OFFSET
1,1
COMMENTS
A generalization of the sequence: Let a(1) = m+1, a(2) = 2*m-1, and for n>=3, a(n) is defined by recursion: Sum{d|n}((-1)^(n/d))*a(d) = -m. Then a(n) = mu(n), if n is not power of 2; otherwise, for n>=4, a(n) = m*n.
LINKS
FORMULA
a(1) = 2, a(2) = 1, and for n > 2, if A209229(n) = 1 [n is a power of 2] then a(n) = n, otherwise a(n) = A008683(n), where A008683(n) is Moebius mu function.
a(n) = 1 + Sum_{d|n, d<n} ((-1)^(n/d))*a(d). [Description converted from an implicit to an explicit recurrence] - Antti Karttunen, Sep 21 2017
MATHEMATICA
a[1] = 2; a[2] = 1; a[n_] := a[n] = If[IntegerQ@ Log2@ n, # + 1, MoebiusMu[n]] &@ Sum[((-1)^(n/d)) a[d], {d, Most@ Divisors@ n}]; Array[a, 105] (* Michael De Vlieger, Sep 21 2017 *)
PROG
(PARI) A178411(n) = { my(s=1); if(n<=2, 3-n, fordiv(n, d, if(d<n, s+=(((-1)^(n/d))*A178411(d)))); s); }; \\ Antti Karttunen, Sep 21 2017
CROSSREFS
Sequence in context: A136674 A144383 A205553 * A257598 A294580 A294587
KEYWORD
sign
AUTHOR
Vladimir Shevelev, May 27 2010
EXTENSIONS
More terms and editing from Antti Karttunen, Sep 21 2017
STATUS
approved