login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144384
T(1,k) = 1 and T(n,k) = [t^k] (1 - t)/(1 - t^n) for n >= 2, square array read by ascending antidiagonals (n >= 1, k >= 0).
3
1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 0, -1, 1, 1, -1, 0, 1, 1, 1, 1, -1, 0, 0, -1, -1, 1, 1, -1, 0, 0, 1, 0, 1, 1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 1, -1, 0, 0, 0, 1, 0, -1, 1, 1, 1, -1, 0, 0, 0, 0, -1, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, -1, 0, 0, 0, 0, 0, -1, 0, -1, -1, -1, 1
OFFSET
1,1
EXAMPLE
Array begins:
n\k | 0 1 2 3 4 5 6 7 8 9 10 ...
-----------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 -1 1 -1 1 -1 1 -1 1 -1 1 ...
3 | 1 -1 0 1 -1 0 1 -1 0 1 -1 ...
4 | 1 -1 0 0 1 -1 0 0 1 -1 0 ...
5 | 1 -1 0 0 0 1 -1 0 0 0 1 ...
6 | 1 -1 0 0 0 0 1 -1 0 0 0 ...
7 | 1 -1 0 0 0 0 0 1 -1 0 0 ...
8 | 1 -1 0 0 0 0 0 0 1 -1 0 ...
9 | 1 -1 0 0 0 0 0 0 0 1 -1 ...
10 | 1 -1 0 0 0 0 0 0 0 0 1 ...
...
MATHEMATICA
f[t_, n_] = If[n == 1, 1/(1 - t), (1 - t)/(1 - t^n)];
a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}];
Flatten[Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}]]
PROG
(Maxima)(nn : 15, kk : 50)$
gf(n) := taylor(if n = 1 then 1/(1 - x) else (1 - x)/(1 - x^n), x, 0, kk)$
T(n, k) := ratcoef(gf(n), x, k)$
create_list(T(n - k, k), n, 1, nn, k, 0, n - 1);
/* Franck Maminirina Ramaharo, Jan 18 2019 */
CROSSREFS
Sequence in context: A114213 A108358 A267959 * A144475 A011758 A015088
KEYWORD
sign,tabl,easy
AUTHOR
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 21 2019
STATUS
approved