The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267959 Triangle read by rows: T(n,k) = 1 if the generalized binomial coefficient (n,k)_f is an integer for every multiplicative function f; otherwise T(n,k) = 0. 1
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0 COMMENTS For 0 <= k <= n, we define (n,k)_f := Product_{i=1..n}f(i)/(Product_{i=1..k}f(i) * Product_{i=1..n-k}f(i)). T(n,k) = 1 if and only if for every prime p <= n there exists an index s_p >= 0 such that e(n,n-k,i,p) = 1 for all 0 <= i < s_p and e(n,n-k,i,p) = 0 for all i >= s_p where e(n,n-k,i,p) represents the value of the carry in the i-th position when adding the base-p representations of n and n-k (see Corollary 12 in Edgar-Spivey reference). T(n,0) = 1 and T(n,1) = 1 for all n. T(n,2) = 1 if and only if n == 2 (mod 4) or n == 3 (mod 4). LINKS Table of n, a(n) for n=0..89. Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6. Tom Edgar, Triangular array image. This image is Figure 1 in Edgar-Spivey reference; it shows rows 0-90 of the triangle with shaded entries corresponding to 1 and other entries corresponding to 0. PROG (Sage) def carry_sequence(n, k, p): M=(n-k).digits(base=p) K=k.digits(base=p) mm=max(len(K), len(M)) M=M+(mm-len(M)+1)*[0] K=K+(mm-len(K)+1)*[0] CS=[floor((M[0]+K[0])/p)] for i in [1..mm]: CS.append(floor((M[i]+K[i]+CS[i-1])/p)) return CS def checkcarrysequence(n, k, p): CS=carry_sequence(n, k, p) if 0 in CS: T=CS[CS.index(0):] if T==len(T)*[0]: return true else: return false else: return true def T(n, k): flag=true for x in prime_range(n+1): if not(checkcarrysequence(n, k, x)): flag=false return Integer(flag) T=[[T(i, j) for j in [0..i]] for i in [0..20]] [x for sublist in T for x in sublist] CROSSREFS Sequence in context: A105567 A114213 A108358 * A144384 A144475 A011758 Adjacent sequences: A267956 A267957 A267958 * A267960 A267961 A267962 KEYWORD nonn,tabl AUTHOR Tom Edgar and Michael Z. Spivey, Jan 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 18:22 EDT 2024. Contains 375910 sequences. (Running on oeis4.)