login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144381 a(n) = A142458(n+5, n). Fifth diagonal of A142458 triangle. 3
1, 677, 47175, 1709675, 44451550, 947113254, 17716715490, 302925749370, 4856552119935, 74258231957275, 1095758678253041, 15736592058221517, 221321453958111620, 3062416225698505060, 41836761536767296660, 565817483249269872324, 7591501608353930033805, 101209790951020335444705 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..890

Index entries for linear recurrences with constant coefficients, signature (75, -2520, 50204, -661458, 6086718, -40273648, 194372208, -687083013, 1771618303, -3293261472, 4325310828, -3886563008, 2261691264, -765434880, 114150400).

FORMULA

a(n) = A142458(n+5, n).

From G. C. Greubel, Mar 16 2022: (Start)

G.f.: x*(1 +602*x -1080*x^2 -172614*x^3 +1780275*x^4 -5025348*x^5 -7549548*x^6 +60043488*x^7 -99645984*x^8 +39979520*x^9 +27596800*x^10)/((1-x)^5*(1-4*x)^4*(1-7*x)^3*(1-10*x)^2*(1-13*x)).

a(n) = (1/1944)*((27*n^3 +216*n^2 +549*n +440)*(3*n +2 - 2*4^(n+4)) +

60*(9*n^2 +57*n +88)*7^(n+3) -32*(3*n+11)*10^(n+4) + 880*13^(n+3)). (End)

MATHEMATICA

T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];

A144381[n_]:= T[n+4, n, 3];

Table[A144381[n], {n, 30}] (* modified by G. C. Greubel, Mar 16 2022 *)

PROG

(Magma) [(1/1944)*((27*n^3 + 216*n^2 + 549*n + 440)*(3*n + 2 - 2*4^(n + 4)) +

60*(9*n^2 + 57*n + 88)*7^(n + 3) - 32*(3*n + 11)*10^(n + 4) +

880*13^(n + 3)): n in [1..30]]; // G. C. Greubel, Mar 16 2022

(Sage)

@CachedFunction

def T(n, k, m): # A144381

if (k==1 or k==n): return 1

else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)

def A144381(n): return T(n+4, n, 3)

[A144381(n) for n in (1..30)] # G. C. Greubel, Mar 16 2022

CROSSREFS

Cf. A142458, A142976, A144380, A144414.

Sequence in context: A205749 A108824 A205471 * A097773 A248887 A031524

Adjacent sequences: A144378 A144379 A144380 * A144382 A144383 A144384

KEYWORD

nonn

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 01 2008

EXTENSIONS

Edited by G. C. Greubel, Mar 16 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 03:51 EST 2022. Contains 358362 sequences. (Running on oeis4.)