login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097773 Pell equation solutions (13*b(n))^2 - 170*a(n)^2 = -1 with b(n):=A097772(n), n>=0. 3
1, 677, 459005, 311204713, 210996336409, 143055204880589, 96991217912702933, 65759902689607707985, 44585117032336113310897, 30228643588021195217080181, 20494975767561338021067051821 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..10.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (678, -1).

FORMULA

a(n)= ((-1)^n)*S(2*n, 26*I) with the imaginary unit I and Chebyshev polynomials S(n, x) with coefficients shown in A049310.

G.f.: (1-x)/(1-678*x+x^2).

a(n)= S(n, 2*339) - S(n-1, 2*339) = T(2*n+1, sqrt(170))/sqrt(170), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.

a(n)=678*a(n-1)-a(n-2), n>1 ; a(0)=1, a(1)=677 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

(x,y) = (13*1=13;1), (8827=13*679;677), (5984693=13*460361;459005), ... give the positive integer solutions to x^2 - 170*y^2 =-1.

MATHEMATICA

LinearRecurrence[{678, -1}, {1, 677}, 11] (* Ray Chandler, Aug 12 2015 *)

CROSSREFS

Cf. A097771 for S(n, 678).

Row 13 of array A188647.

Sequence in context: A108824 A205471 A144381 * A248887 A031524 A158385

Adjacent sequences:  A097770 A097771 A097772 * A097774 A097775 A097776

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 21:19 EDT 2017. Contains 284111 sequences.