This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097773 Pell equation solutions (13*b(n))^2 - 170*a(n)^2 = -1 with b(n):=A097772(n), n>=0. 4
 1, 677, 459005, 311204713, 210996336409, 143055204880589, 96991217912702933, 65759902689607707985, 44585117032336113310897, 30228643588021195217080181, 20494975767561338021067051821, 13895563341762999157088244054457 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..353 Tanya Khovanova, Recursive Sequences Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. Index entries for linear recurrences with constant coefficients, signature (678, -1). FORMULA a(n) = ((-1)^n)*S(2*n, 26*I) with the imaginary unit I and Chebyshev polynomials S(n, x) with coefficients shown in A049310. G.f.: (1-x)/(1-678*x+x^2). a(n) = S(n, 2*339) - S(n-1, 2*339) = T(2*n+1, sqrt(170))/sqrt(170), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle. a(n) = 678*a(n-1) - a(n-2), n>1; a(0)=1, a(1)=677. - Philippe Deléham, Nov 18 2008 EXAMPLE (x,y) = (13*1=13;1), (8827=13*679;677), (5984693=13*460361;459005), ... give the positive integer solutions to x^2 - 170*y^2 =-1. MATHEMATICA LinearRecurrence[{678, -1}, {1, 677}, 11] (* Ray Chandler, Aug 12 2015 *) PROG (PARI) my(x='x+O('x^20)); Vec((1-x)/(1-678*x+x^2)) \\ G. C. Greubel, Aug 01 2019 (MAGMA) I:=[1, 677]; [n le 2 select I[n] else 678*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019 (Sage) ((1-x)/(1-678*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019 (GAP) a:=[1, 677];; for n in [3..20] do a[n]:=678*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019 CROSSREFS Cf. A097771 for S(n, 678). Row 13 of array A188647. Sequence in context: A108824 A205471 A144381 * A248887 A031524 A158385 Adjacent sequences:  A097770 A097771 A097772 * A097774 A097775 A097776 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 08:15 EDT 2019. Contains 328051 sequences. (Running on oeis4.)