login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097774 Chebyshev U(n,x) polynomial evaluated at x=393=2*14^2+1. 2
1, 786, 617795, 485586084, 381670044229, 299992169177910, 235793463303793031, 185333362164612144456, 145671786867921841749385, 114497839144824403002872154, 89995155896045112838415763659 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Used to form integer solutions of Pell equation a^2 - 197*b^2 =-1. See A097775 with A097776.

LINKS

Table of n, a(n) for n=0..10.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (786, -1).

FORMULA

a(n) = 2*393*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.

a(n) = S(n, 2*393)= U(n, 393), Chebyshev's polynomials of the second kind. See A049310.

G.f.: 1/(1-2*393*x+x^2).

a(n)= sum((-1)^k*binomial(n-k, k)*786^(n-2*k), k=0..floor(n/2)), n>=0.

a(n) = ((393+28*sqrt(197))^(n+1) - (393-28*sqrt(197))^(n+1))/(56*sqrt(197)), n>=0.

MATHEMATICA

LinearRecurrence[{786, -1}, {1, 786}, 30] (* or *) CoefficientList[ Series[ 1/(1-786x+x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jun 15 2011 *)

CROSSREFS

Sequence in context: A097776 A031526 A108795 * A031896 A045231 A267476

Adjacent sequences:  A097771 A097772 A097773 * A097775 A097776 A097777

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 28 02:14 EDT 2017. Contains 284182 sequences.