login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144379
Triangle read by rows, first n terms of an array formed by A054521 * A054521(transform).
2
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4, 2, 6, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 2, 1, 3, 2, 4, 3, 6, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 1, 1, 1, 1, 1, 2, 2, 3, 3, 2, 3, 4, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 1, 1, 1, 2, 2, 2, 3, 3, 2, 3, 4, 3, 5
OFFSET
1,6
COMMENTS
Right border = phi(n): (1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10,...).
Row sums = A125728: (1, 2, 4, 5, 10, 7, 18, 16, 23,...) = the number of positive integers less <=k coprime to both k and n.
FORMULA
Given A054521 as an infinite lower triangular matrix, perform A054521(transform). Multiply the result by A054521 getting an array, then extract the first n terms of each row to form a new triangle.
EXAMPLE
A054521 * A054521(transform) =
1, 1, 1, 1, 1, 1, 1,...
1, 1, 1, 1, 1, 1, 1,...
1, 1, 2, 1, 2, 1, 2,...
1, 1, 1, 2, 2, 1, 2,...
1, 1, 2, 2, 4, 1, 4,...
...
Then extract the lower half of the array including the diagonal, A000010, phi(n); getting triangle A144379:
1;
1, 1;
1, 1, 2
1, 1, 1, 2;
1, 1, 2, 2, 4;
1, 1, 1, 1, 1, 2;
1, 1, 2, 2, 4, 2, 6;
1, 1, 1, 2, 2, 2, 3, 4;
1, 1, 2, 1, 3, 2, 4, 3, 6;
1, 1, 1, 2, 2, 1, 2, 3, 2, 4;
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 19 2008
STATUS
approved