login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275120
List the least common multiples of {1, 2, ..., k} for k = 0, 1, ...; this sequence gives the length of the n-th block of consecutive equal numbers.
3
2, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6
OFFSET
1,1
COMMENTS
a(n) is the count of how many consecutive terms in A003418 are equal.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A057820(n), n>1.
EXAMPLE
lcm({}) = lcm({1}) = 1, so a(1) = 2.
lcm({1, 2}) = 2, so a(2) = 1.
lcm({1, 2, 3}) = 6, so a(3) = 1.
lcm({1, 2, 3, 4}) = 12, so a(4) = 1.
lcm({1, ..., 5}) = lcm({1, ..., 6}) = 60, so a(5) = 2.
lcm({1, ..., 7}) = 420, so a(6) = 1.
lcm({1, ..., 8}) = 840, so a(7) = 1.
lcm({1, ..., 9}) = lcm({1, ..., 10}) = 2520, so a(8) = 2.
lcm({1, ..., 11}) = lcm({1, ..., 12}) = 27720, so a(9) = 2.
MATHEMATICA
{2}~Join~Rest@ Most@ Map[Length, Split@ Table[LCM @@ Range@ n, {n, 396}]] (* Michael De Vlieger, Jul 18 2016 *)
PROG
(PARI) do(lim)=my(v=List()); for(e=2, logint(lim\=1, 2), forprime(p=2, sqrtnint(lim, e), listput(v, p^e))); v=Set(concat(Vec(v), primes([2, lim]))); concat(2, vector(#v-1, i, v[i+1]-v[i])) \\ Charles R Greathouse IV, Jul 18 2016
CROSSREFS
Frequency of given numbers using A003418.
Apart from the first term, same as A057820.
Sequence in context: A029444 A122191 A097847 * A144379 A337260 A296772
KEYWORD
nonn
AUTHOR
Tyler Skywalker, Jul 18 2016
STATUS
approved