Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Jul 21 2016 16:28:01
%S 2,1,1,1,2,1,1,2,2,3,1,2,4,2,2,2,2,1,5,4,2,4,2,4,6,2,3,3,4,2,6,2,2,6,
%T 8,4,2,4,2,4,8,4,2,1,3,6,2,10,2,6,6,4,2,4,6,2,10,2,4,2,12,12,4,2,4,6,
%U 2,2,8,5,1,6,6,2,6,4,2,6,4,14,4,2,4,14,6,6,4,2,4,6,2,6,6,6,4,6
%N List the least common multiples of {1, 2, ..., k} for k = 0, 1, ...; this sequence gives the length of the n-th block of consecutive equal numbers.
%C a(n) is the count of how many consecutive terms in A003418 are equal.
%H Charles R Greathouse IV, <a href="/A275120/b275120.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A057820(n), n>1.
%e lcm({}) = lcm({1}) = 1, so a(1) = 2.
%e lcm({1, 2}) = 2, so a(2) = 1.
%e lcm({1, 2, 3}) = 6, so a(3) = 1.
%e lcm({1, 2, 3, 4}) = 12, so a(4) = 1.
%e lcm({1, ..., 5}) = lcm({1, ..., 6}) = 60, so a(5) = 2.
%e lcm({1, ..., 7}) = 420, so a(6) = 1.
%e lcm({1, ..., 8}) = 840, so a(7) = 1.
%e lcm({1, ..., 9}) = lcm({1, ..., 10}) = 2520, so a(8) = 2.
%e lcm({1, ..., 11}) = lcm({1, ..., 12}) = 27720, so a(9) = 2.
%t {2}~Join~Rest@ Most@ Map[Length, Split@ Table[LCM @@ Range@ n, {n, 396}]] (* _Michael De Vlieger_, Jul 18 2016 *)
%o (PARI) do(lim)=my(v=List()); for(e=2,logint(lim\=1,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); v=Set(concat(Vec(v), primes([2,lim]))); concat(2, vector(#v-1,i,v[i+1]-v[i])) \\ _Charles R Greathouse IV_, Jul 18 2016
%Y Frequency of given numbers using A003418.
%Y Apart from the first term, same as A057820.
%K nonn
%O 1,1
%A _Tyler Skywalker_, Jul 18 2016