This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A140966 a(n) = (5 + (-2)^n)/3. 9
 2, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Inverse binomial transform of A048573. This is an example of the case k=-1 of sequences with recurrences a(n) = k*a(n-1) + (k+3)*a(n-2) - (2*k+2)*a(n-3). The case k=1 is covered, for example, by A097163, A135520, A136326, A136336, or A137208. Sequences with k=2 are A094554 and A094555. Sequences with k=3 are A084175, A108924, and A139818. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-1,2). FORMULA a(n) = -a(n-1) + 2*a(n-2). G.f.: (2+3*x)/((1-x)*(1+2*x)). a(n+1) - a(n) = (-1)^(n+1)*A000079(n). a(n+3) = (-1)^n*A083582(n). a(n+1) - 2*a(n) = -a(n+2). a(n+1) - 3*a(n) = 5*(-1)^(n+1)*A078008(n) = (-1)^(n+1)*A001045(n-1). a(2n+3) = -A083584(n), a(2n) = A163834(n). - Philippe Deléham, Feb 24 2014 PROG (MAGMA) [( 5+(-2)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011 (PARI) a(n)=(5+(-2)^n)/3 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Sequence in context: A277640 A165401 A213074 * A058036 A136179 A185176 Adjacent sequences:  A140963 A140964 A140965 * A140967 A140968 A140969 KEYWORD sign,easy,changed AUTHOR Paul Curtz, Jul 27 2008 EXTENSIONS Definition simplified by R. J. Mathar, Sep 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 21:31 EDT 2018. Contains 316404 sequences. (Running on oeis4.)