login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281575
Numbers k such that (d^2 + (k/d)^2)/2 is prime for all divisors d of k.
1
3, 5, 11, 15, 19, 29, 35, 39, 51, 59, 61, 65, 69, 71, 79, 85, 95, 101, 131, 139, 141, 145, 159, 181, 199, 205, 209, 221, 231, 271, 299, 309, 329, 349, 371, 379, 391, 409, 415, 449, 461, 471, 519, 521, 535, 545, 559, 569, 571, 581, 631, 641, 649, 661, 685, 689, 739, 745, 751, 779, 799, 815, 821, 861
OFFSET
1,1
COMMENTS
All terms are odd and squarefree.
Generalized Bunyakovsky conjecture implies for any odd prime p there are infinitely many terms of the form p*q where q is prime.
LINKS
EXAMPLE
15 is a member because (1^2 + 15^2)/2 = 113 and (3^2 + 5^2)/2 = 17 are prime.
MAPLE
filter:= n -> andmap(d -> isprime((d^2 + (n/d)^2)/2), numtheory:-divisors(n)):
select(filter, [seq(i, i=1..3000, 2)]);
MATHEMATICA
pdnQ[n_]:=Module[{divs=Divisors[n]}, AllTrue[(#^2+(n/#)^2)/2&/@ divs, PrimeQ]]; Select[Range[1000], pdnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 12 2017 *)
PROG
(PARI) isp(q) = (denominator(q)==1) && isprime(q);
isok(n) = {fordiv(n, d, if (!isp((d^2 + (n/d)^2)/2), return(0)); ); return (1); } \\ Michel Marcus, Dec 11 2017
CROSSREFS
Contains A048161. Contained in A281505.
Sequence in context: A302590 A316151 A265121 * A105772 A244520 A034169
KEYWORD
nonn
AUTHOR
STATUS
approved