login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182734
Number of parts in all partitions of 2n that do not contain 1 as a part.
5
0, 1, 3, 8, 17, 34, 68, 123, 219, 382, 642, 1055, 1713, 2713, 4241, 6545, 9950, 14953, 22255, 32752, 47774, 69104, 99114, 141094, 199489, 280096, 390836, 542170, 747793, 1025912, 1400425, 1902267, 2572095, 3462556, 4641516, 6196830, 8241460, 10919755, 14416885
OFFSET
0,3
COMMENTS
Essentially this is a bisection (even part) of A138135.
LINKS
MAPLE
b:= proc(n, i) option remember; local p, q;
if n<0 then [0, 0]
elif n=0 then [1, 0]
elif i=1 then [0, 0]
else p, q:= b(n, i-1), b(n-i, i);
[p[1]+q[1], p[2]+q[2]+q[1]]
fi
end:
a:= n-> b(2*n, 2*n)[2]:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 03 2010
MATHEMATICA
Table[Length[Flatten[DeleteCases[IntegerPartitions[2n], _?(MemberQ[ #, 1]&)]]], {n, 0, 40}] (* Harvey P. Dale, Aug 08 2013 *)
b[n_] := DivisorSigma[0, n]-1+Sum[(DivisorSigma[0, k]-1)*(PartitionsP[n-k] - PartitionsP[n-k-1]), {k, 1, n-1}]; a[0] = 0; a[n_] := b[2n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 07 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 03 2010
EXTENSIONS
More terms from Alois P. Heinz, Dec 03 2010
STATUS
approved