login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182737
Sum of parts in all partitions of 2n+1 that do not contain 1 as a part.
3
0, 3, 10, 28, 72, 154, 312, 615, 1122, 1995, 3465, 5819, 9575, 15498, 24563, 38378, 59202, 90055, 135420, 201630, 297045, 433741, 628155, 902212, 1286348, 1821567, 2562126, 3581655, 4977867, 6879400, 9457318, 12936609, 17610320, 23863323, 32196090
OFFSET
0,2
COMMENTS
Bisection (odd part) of A138880.
LINKS
FORMULA
a(n) = A005408(n)*A182747(n).
MAPLE
b:= proc(n, i) option remember; local p, q;
if n<0 then [0, 0]
elif n=0 then [1, 0]
elif i<2 then [0, 0]
else p, q:= b(n, i-1), b(n-i, i);
[p[1]+q[1], p[2]+q[2]+q[1]*i]
fi
end:
a:= n-> b(2*n+1, 2*n+1)[2]:
seq(a(n), n=0..34); # Alois P. Heinz, Dec 03 2010
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{p, q}, Which[n<0, {0, 0}, n == 0, {1, 0}, i<2, {0, 0}, True, {p, q} = {b[n, i-1], b[n-i, i]}; {p[[1]] + q[[1]], p[[2]] + q[[2]] + q[[1]]*i}]]; a[n_] := b[2*n + 1, 2*n+1][[2]]; Table[ a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 03 2010
EXTENSIONS
More terms from Alois P. Heinz, Dec 03 2010
STATUS
approved