login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182735
Number of parts in all partitions of 2n+1 that do not contain 1 as a part.
3
0, 1, 3, 8, 20, 41, 80, 153, 271, 469, 795, 1305, 2102, 3336, 5190, 7968, 12090, 18104, 26821, 39371, 57220, 82472, 117958, 167405, 235945, 330425, 459803, 636142, 875307, 1197983, 1631470, 2211377, 2983695, 4008386, 5362831, 7146335, 9486834, 12548085, 16538651
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i) option remember; local p, q;
if n<0 then [0, 0]
elif n=0 then [1, 0]
elif i<2 then [0, 0]
else p, q:= b(n, i-1), b(n-i, i);
[p[1]+q[1], p[2]+q[2]+q[1]]
fi
end:
a:= n-> b(2*n+1, 2*n+1)[2]:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 03 2010
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{p, q}, Which[n<0, {0, 0}, n == 0, {1, 0}, i < 2, {0, 0}, True, {p, q} = {b[n, i-1], b[n-i, i]}; {p[[1]] + q[[1]], p[[2]] + q[[2]] + q[[1]]}]]; a[n_] := b[2*n+1, 2*n+1][[2]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A135010, A138121, A182734, A182743, A182747. Bisection (odd part) of A138135.
Sequence in context: A224421 A354317 A143785 * A135565 A139488 A028307
KEYWORD
nonn
AUTHOR
Omar E. Pol, Dec 03 2010
EXTENSIONS
More terms from Alois P. Heinz, Dec 03 2010
STATUS
approved