OFFSET
0,2
FORMULA
Equals A007318 * [1, 2, 3, 4, 0, 0, 0, ...].
a(n) = (4n^3 - 3n^2 + 11n + 6)/6. - Emeric Deutsch, Apr 30 2008
G.f.: (1 - x + 2*x^2 + 2*x^3)/(1-x)^4. - Colin Barker, Feb 01 2012
EXAMPLE
a(5) = 43 = (1, 4, 6, 4, 1) dot (1, 2, 3, 4, 0) = (1 + 8, + 18 + 16 + 0).
MAPLE
a:=proc(n) options operator, arrow: (2/3)*n^3-(1/2)*n^2+(11/6)*n+1 end proc: seq(a(n), n=0..35); # Emeric Deutsch, Apr 30 2008
MATHEMATICA
f[n_] := Plus @@ (Table[ Binomial[n - 1, i], {i, 0, n - 1}] PadRight[{1, 2, 3, 4}, n]); Array[f, 43] (* Robert G. Wilson v, Apr 24 2008 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Apr 23 2008
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Apr 24 2008
STATUS
approved