login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139488
Binomial transform of [1, 2, 3, 4, 0, 0, 0, ...].
1
1, 3, 8, 20, 43, 81, 138, 218, 325, 463, 636, 848, 1103, 1405, 1758, 2166, 2633, 3163, 3760, 4428, 5171, 5993, 6898, 7890, 8973, 10151, 11428, 12808, 14295, 15893, 17606, 19438, 21393, 23475, 25688, 28036, 30523, 33153, 35930, 38858, 41941, 45183
OFFSET
0,2
FORMULA
Equals A007318 * [1, 2, 3, 4, 0, 0, 0, ...].
a(n) = (4n^3 - 3n^2 + 11n + 6)/6. - Emeric Deutsch, Apr 30 2008
G.f.: (1 - x + 2*x^2 + 2*x^3)/(1-x)^4. - Colin Barker, Feb 01 2012
EXAMPLE
a(5) = 43 = (1, 4, 6, 4, 1) dot (1, 2, 3, 4, 0) = (1 + 8, + 18 + 16 + 0).
MAPLE
a:=proc(n) options operator, arrow: (2/3)*n^3-(1/2)*n^2+(11/6)*n+1 end proc: seq(a(n), n=0..35); # Emeric Deutsch, Apr 30 2008
MATHEMATICA
f[n_] := Plus @@ (Table[ Binomial[n - 1, i], {i, 0, n - 1}] PadRight[{1, 2, 3, 4}, n]); Array[f, 43] (* Robert G. Wilson v, Apr 24 2008 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Apr 23 2008
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Apr 24 2008
STATUS
approved