Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 17 2022 11:21:08
%S 1,3,8,20,43,81,138,218,325,463,636,848,1103,1405,1758,2166,2633,3163,
%T 3760,4428,5171,5993,6898,7890,8973,10151,11428,12808,14295,15893,
%U 17606,19438,21393,23475,25688,28036,30523,33153,35930,38858,41941,45183
%N Binomial transform of [1, 2, 3, 4, 0, 0, 0, ...].
%F Equals A007318 * [1, 2, 3, 4, 0, 0, 0, ...].
%F a(n) = (4n^3 - 3n^2 + 11n + 6)/6. - _Emeric Deutsch_, Apr 30 2008
%F G.f.: (1 - x + 2*x^2 + 2*x^3)/(1-x)^4. - _Colin Barker_, Feb 01 2012
%e a(5) = 43 = (1, 4, 6, 4, 1) dot (1, 2, 3, 4, 0) = (1 + 8, + 18 + 16 + 0).
%p a:=proc(n) options operator, arrow: (2/3)*n^3-(1/2)*n^2+(11/6)*n+1 end proc: seq(a(n),n=0..35); # _Emeric Deutsch_, Apr 30 2008
%t f[n_] := Plus @@ (Table[ Binomial[n - 1, i], {i, 0, n - 1}] PadRight[{1, 2, 3, 4}, n]); Array[f, 43] (* _Robert G. Wilson v_, Apr 24 2008 *)
%Y Cf. A005408, A007318, A104249, A116445.
%K nonn,easy
%O 0,2
%A _Gary W. Adamson_, Apr 23 2008
%E More terms from _Robert G. Wilson v_ and _Emeric Deutsch_, Apr 24 2008