The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182735 Number of parts in all partitions of 2n+1 that do not contain 1 as a part. 3

%I

%S 0,1,3,8,20,41,80,153,271,469,795,1305,2102,3336,5190,7968,12090,

%T 18104,26821,39371,57220,82472,117958,167405,235945,330425,459803,

%U 636142,875307,1197983,1631470,2211377,2983695,4008386,5362831,7146335,9486834,12548085,16538651

%N Number of parts in all partitions of 2n+1 that do not contain 1 as a part.

%H Alois P. Heinz, <a href="/A182735/b182735.txt">Table of n, a(n) for n = 0..1000</a>

%p b:= proc(n,i) option remember; local p,q;

%p if n<0 then [0,0]

%p elif n=0 then [1,0]

%p elif i<2 then [0,0]

%p else p, q:= b(n,i-1), b(n-i,i);

%p [p[1]+q[1], p[2]+q[2]+q[1]]

%p fi

%p end:

%p a:= n-> b(2*n+1, 2*n+1)[2]:

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Dec 03 2010

%t b[n_, i_] := b[n, i] = Module[{p, q}, Which[n<0, {0, 0}, n == 0, {1, 0}, i < 2, {0, 0}, True, {p, q} = {b[n, i-1], b[n-i, i]}; {p[[1]] + q[[1]], p[[2]] + q[[2]] + q[[1]]}]]; a[n_] := b[2*n+1, 2*n+1][[2]]; Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Oct 29 2015, after _Alois P. Heinz_ *)

%Y Cf. A135010, A138121, A182734, A182743, A182747. Bisection (odd part) of A138135.

%K nonn

%O 0,3

%A _Omar E. Pol_, Dec 03 2010

%E More terms from _Alois P. Heinz_, Dec 03 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 21:29 EDT 2021. Contains 345393 sequences. (Running on oeis4.)