login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332490
a(n) = Sum_{k=1..n} k * ceiling(n/k).
7
1, 4, 10, 18, 30, 42, 61, 77, 101, 124, 153, 177, 218, 246, 285, 325, 373, 409, 467, 507, 570, 624, 683, 731, 816, 873, 942, 1010, 1095, 1155, 1258, 1322, 1418, 1500, 1589, 1673, 1801, 1877, 1976, 2072, 2203, 2287, 2426, 2514, 2643, 2767, 2886, 2982, 3155, 3262
OFFSET
1,2
FORMULA
G.f.: x/(1 - x)^3 + (x/(1 - x)) * Sum_{k>=1} x^k / (1 - x^k)^2.
a(n) = n*(n + 1)/2 + Sum_{k=1..n-1} sigma(k).
a(n) ~ (6 + Pi^2)*n^2/12. - Vaclav Kotesovec, Mar 10 2020
MATHEMATICA
Table[Sum[k Ceiling[n/k], {k, 1, n}], {n, 1, 50}]
Table[n (n + 1)/2 + Sum[DivisorSigma[1, k], {k, 1, n - 1}], {n, 1, 50}]
nmax = 50; CoefficientList[Series[x/(1 - x)^3 + (x/(1 - x)) Sum[x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(Magma) [&+[k*Ceiling(n/k):k in [1..n]]:n in [1..50]]; // Marius A. Burtea, Feb 16 2020
(PARI) a(n) = sum(k=1, n, k*ceil(n/k)); \\ Michel Marcus, Feb 17 2020
(Python)
from math import isqrt
def A332490(n): return n*(n+1)-(s:=isqrt(n-1))**2*(s+1)+sum((q:=(n-1)//k)*((k<<1)+q+1) for k in range(1, s+1))>>1 # Chai Wah Wu, Oct 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 16 2020
STATUS
approved