|
|
A202386
|
|
Nonpalindromic numbers m such that the difference between the square of m and the square of the reversal of m is itself a perfect square. Numbers ending in 0 are excluded.
|
|
5
|
|
|
65, 5625, 6565, 50721, 65065, 71555, 75515, 84295, 541063, 557931, 650065, 650606, 656565, 699796, 809325, 827372, 934065, 2855182, 4637061, 4854634, 5791775, 5883141, 5951693, 6129084, 6500065, 6731076, 6752626, 6791774, 7768827, 8084505, 9349065
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is infinite because 65*10^k + 65 is a term for all k > 1.
|
|
REFERENCES
|
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1996, p. 147.
|
|
LINKS
|
Giovanni Resta, Table of n, a(n) for n = 1..200
|
|
EXAMPLE
|
5625 belongs to this sequence because 5625^2 - 5265^2 = 1980^2.
|
|
MATHEMATICA
|
lst = {}; Do[a = n^2; b = FromDigits[Reverse[IntegerDigits[n]]]^2; If[MatchQ[Sqrt[a - b], _Integer] && ! a == b, AppendTo[lst, n]], {n, 85000}]; Select[lst, ! Mod[#, 10] == 0 &]
|
|
PROG
|
(PARI) isok(m) = my(r=fromdigits(Vecrev(digits(m)))); (r != m) && (m % 10) && issquare(m^2 - r^2); \\ Michel Marcus, Feb 27 2020
|
|
CROSSREFS
|
Cf. A068536, A000290.
Sequence in context: A110900 A084272 A146756 * A294955 A115432 A116104
Adjacent sequences: A202383 A202384 A202385 * A202387 A202388 A202389
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Arkadiusz Wesolowski, Dec 18 2011
|
|
EXTENSIONS
|
Name clarified by Michel Marcus, Feb 27 2020
|
|
STATUS
|
approved
|
|
|
|