login
A273969
Numbers n such that there exists a pair x,y, where x<y, x! = n and y! = n, that makes {x,y,n,n} an amicable multiset.
3
702240, 817740, 1156680, 1159200, 1811040, 2450448, 2570400, 2784600, 3534300, 3912480, 4228560, 4546080, 4702320, 5682600, 6902280, 7280280, 7469280, 7706160, 8225280, 8316000, 8465184, 8522640, 8639400, 9025380, 9256800, 9282000, 9492120, 9828000
OFFSET
1,1
COMMENTS
We call the multiset {x,y,n,n} amicable iff sigma(x) = sigma(y) = sigma(n) = x+y+n+n. For the x values, see A273970. For the y values, see A273971.
If the condition x<y were dropped, the terms from A259306 would also belong here.
LINKS
John Cerkan, Python code
EXAMPLE
sigma(695520) = sigma(803040) = sigma(702240) = 695520 + 803040 + 702240 + 702240.
KEYWORD
nonn
AUTHOR
John Cerkan, Jul 17 2016
STATUS
approved