login
A273971
Numbers y such that there exists a pair x, n, with x < y, x != n and y != n that makes {x,y,n,n} an amicable multiset
3
756000, 803040, 1267560, 1442448, 1851360, 2535120, 3209760, 3477240, 3926160, 3969840, 4413240, 4664880, 6094368, 6840540, 7617960, 7783020, 8027880, 8360352, 8586900, 9215640, 9559200, 9596520, 9697380, 9811620, 9815400, 9938160, 10063200, 10234224
OFFSET
1,1
COMMENTS
We call the multiset {x,y,n,n} amicable iff sigma(x) = sigma(y) = sigma(n) = x+y+n+n. For the n values, see A273969. For the x values, see A273970.
If the condition x<y were dropped, the terms from A259306 would also belong here.
LINKS
John Cerkan, Python code
EXAMPLE
sigma(695520) = sigma(803040) = sigma(702240) = 695520 + 803040 + 702240 + 702240.
KEYWORD
nonn
AUTHOR
John Cerkan, Jul 17 2016
STATUS
approved