login
A273970
Numbers x such that there exist a pair y, n with x < y, x != n and y != n that makes {x,y,n,n} an amicable multiset.
3
695520, 753480, 1113840, 1136520, 1784160, 2313360, 2898720, 3140280, 3865680, 3960600, 4272840, 4500720, 4626720, 6126120, 6167700, 7197960, 7442820, 7731360, 8177400, 8498700, 8784720, 8828820, 8920800, 8966160, 9124920, 9232860, 9664200, 9729720
OFFSET
1,1
COMMENTS
We call the multiset {x,y,n,n} amicable iff sigma(x) = sigma(y) = sigma(n) = x+y+n+n. For the n values, see A273969. For the y values, see A273971.
If the condition x<y were dropped, the terms from A259306 would also belong here.
LINKS
John Cerkan, Python code
EXAMPLE
sigma(695520) = sigma(803040) = sigma(702240) = 695520 + 803040 + 702240 + 702240.
KEYWORD
nonn
AUTHOR
John Cerkan, Jul 17 2016
STATUS
approved