login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273968
T(n,k)=Number of nXk 0..3 arrays with no three equal values forming an isosceles triangle, and new values introduced in 0..3 order.
4
1, 2, 2, 5, 10, 5, 15, 105, 105, 15, 51, 1264, 1946, 1264, 51, 187, 13045, 24587, 24587, 13045, 187, 715, 136063, 211121, 49534, 211121, 136063, 715, 2795, 1273961, 2116450, 36817, 36817, 2116450, 1273961, 2795, 11051, 11936399, 15084593, 40569
OFFSET
1,2
COMMENTS
Table starts
......1..........2..........5....15.....51.....187......715......2795.....11051
......2.........10........105..1264..13045..136063..1273961..11936399..95697853
......5........105.......1946.24587.211121.2116450.15084593.112714143.511843593
.....15.......1264......24587.49534..36817...40569....36570.....90627.....89429
.....51......13045.....211121.36817....356......10........0.........0
....187.....136063....2116450.40569.....10.......0........0
....715....1273961...15084593.36570......0.......0
...2795...11936399..112714143.90627......0
..11051...95697853..511843593.89429
..43947..800561388.2841058530
.175275.5824237329
.700075
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 7*a(n-1) -14*a(n-2) +8*a(n-3)
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..2. .0..1..2..1. .0..1..0..2. .0..0..1..0. .0..0..1..1
..3..1..0..0. .0..3..2..3. .3..3..3..2. .2..3..3..3. .2..1..2..0
..3..1..3..3. .0..3..2..3. .1..2..2..1. .3..2..1..1. .3..1..3..0
..0..2..1..2. .2..1..0..0. .0..1..0..1. .1..0..2..2. .3..1..3..2
CROSSREFS
Column 1 is A007581(n-1).
Sequence in context: A193899 A334017 A208567 * A273964 A223062 A208788
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jun 05 2016
STATUS
approved