login
Numbers y such that there exists a pair x, n, with x < y, x != n and y != n that makes {x,y,n,n} an amicable multiset
3

%I #17 Jul 27 2016 21:56:20

%S 756000,803040,1267560,1442448,1851360,2535120,3209760,3477240,

%T 3926160,3969840,4413240,4664880,6094368,6840540,7617960,7783020,

%U 8027880,8360352,8586900,9215640,9559200,9596520,9697380,9811620,9815400,9938160,10063200,10234224

%N Numbers y such that there exists a pair x, n, with x < y, x != n and y != n that makes {x,y,n,n} an amicable multiset

%C We call the multiset {x,y,n,n} amicable iff sigma(x) = sigma(y) = sigma(n) = x+y+n+n. For the n values, see A273969. For the x values, see A273970.

%C If the condition x<y were dropped, the terms from A259306 would also belong here.

%H John Cerkan, <a href="/A273971/b273971.txt">Table of n, a(n) for n = 1..7515</a>

%H John Cerkan, <a href="/A273971/a273971.py.txt">Python code</a>

%e sigma(695520) = sigma(803040) = sigma(702240) = 695520 + 803040 + 702240 + 702240.

%Y Cf. A259302, A259303, A259304, A259305, A259306, A273969, A273970.

%K nonn

%O 1,1

%A _John Cerkan_, Jul 17 2016