login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Octagonal numbers (A000567) that are the sum of three consecutive octagonal numbers.
5

%I #11 Sep 16 2018 13:00:49

%S 698901,5102520783381,37252493940331837461,

%T 271973082264557457061125141,1985621622943208359132836202790421,

%U 14496630316026749501691464257547633057301,105837027604506739193825102426073141683789429781,772695182809023513889440668692977953487035688873891861

%N Octagonal numbers (A000567) that are the sum of three consecutive octagonal numbers.

%H Colin Barker, <a href="/A258129/b258129.txt">Table of n, a(n) for n = 1..145</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7300803,-7300803,1).

%F G.f.: -21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)).

%e 698901 is in the sequence because Oct(483) = 698901 = 231296 + 232965 + 234640 = Oct(278) + Oct(279) + Oct(280).

%t CoefficientList[Series[-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 18 2017 *)

%t LinearRecurrence[{7300803,-7300803,1},{698901,5102520783381,37252493940331837461},20] (* _Harvey P. Dale_, Sep 16 2018 *)

%o (PARI) Vec(-21*x*(x^2 -844482*x +33281)/((x-1)*(x^2 -7300802*x +1)) + O('x^20))

%Y Cf. A000567, A258128, A258130, A258131, A258132.

%K nonn,easy

%O 1,1

%A _Colin Barker_, May 21 2015