login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265204
Sum of phi(i) over squarefree numbers i <= n.
1
1, 2, 4, 4, 8, 10, 16, 16, 16, 20, 30, 30, 42, 48, 56, 56, 72, 72, 90, 90, 102, 112, 134, 134, 134, 146, 146, 146, 174, 182, 212, 212, 232, 248, 272, 272, 308, 326, 350, 350, 390, 402, 444, 444, 444, 466, 512, 512, 512, 512, 544, 544, 596, 596, 636, 636, 672, 700, 758, 758, 818, 848, 848, 848, 896, 916, 982, 982, 1026, 1050
OFFSET
1,2
COMMENTS
Partial sums of absolute values of A097945. - Robert Israel, Dec 10 2015
LINKS
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 0, a(n-1))+
`if`(issqrfree(n), phi(n), 0)
end:
seq(a(n), n=1..70); # Alois P. Heinz, Dec 04 2015
N:= 1000: # to get a(1) to a(N)
V:= Vector(N, 1):
Primes:= select(isprime, [2, seq(i, i=3..N, 2)]):
for p in Primes do
J1:= [seq(i, i=p..N, p)];
J2:= [seq(i, i=p^2..N, p^2)];
V[J1]:= V[J1] * (p-1);
V[J2]:= 0;
od:
ListTools[PartialSums](convert(V, list)); # Robert Israel, Dec 10 2015
MATHEMATICA
Table[Sum[EulerPhi@ i, {i, Select[Range@ n, SquareFreeQ]}], {n, 70}] (* Michael De Vlieger, Dec 10 2015 *)
PROG
(PARI) a(n) = sum(i=1, n, eulerphi(i)*issquarefree(i)) \\ Anders Hellström, Dec 04 2015
(Perl) use ntheory ":all"; sub an { vecsum(map { is_square_free($_) ? euler_phi($_) : () } 1..shift); } say an($_) for 1..70; # Dana Jacobsen, Dec 10 2015
CROSSREFS
Sequence in context: A039879 A125204 A241386 * A073420 A034408 A227333
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, Dec 04 2015
STATUS
approved