login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of phi(i) over squarefree numbers i <= n.
1

%I #26 Dec 24 2015 10:18:53

%S 1,2,4,4,8,10,16,16,16,20,30,30,42,48,56,56,72,72,90,90,102,112,134,

%T 134,134,146,146,146,174,182,212,212,232,248,272,272,308,326,350,350,

%U 390,402,444,444,444,466,512,512,512,512,544,544,596,596,636,636,672,700,758,758,818,848,848,848,896,916,982,982,1026,1050

%N Sum of phi(i) over squarefree numbers i <= n.

%C Partial sums of absolute values of A097945. - _Robert Israel_, Dec 10 2015

%H Robert Israel, <a href="/A265204/b265204.txt">Table of n, a(n) for n = 1..10000</a>

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 0, a(n-1))+

%p `if`(issqrfree(n), phi(n), 0)

%p end:

%p seq(a(n), n=1..70); # _Alois P. Heinz_, Dec 04 2015

%p N:= 1000: # to get a(1) to a(N)

%p V:= Vector(N, 1):

%p Primes:= select(isprime, [2,seq(i,i=3..N,2)]):

%p for p in Primes do

%p J1:= [seq(i,i=p..N,p)];

%p J2:= [seq(i,i=p^2..N,p^2)];

%p V[J1]:= V[J1] * (p-1);

%p V[J2]:= 0;

%p od:

%p ListTools[PartialSums](convert(V,list)); # _Robert Israel_, Dec 10 2015

%t Table[Sum[EulerPhi@ i, {i, Select[Range@ n, SquareFreeQ]}], {n, 70}] (* _Michael De Vlieger_, Dec 10 2015 *)

%o (PARI) a(n) = sum(i=1, n, eulerphi(i)*issquarefree(i)) \\ _Anders Hellström_, Dec 04 2015

%o (Perl) use ntheory ":all"; sub an { vecsum(map { is_square_free($_) ? euler_phi($_) : () } 1..shift); } say an($_) for 1..70; # _Dana Jacobsen_, Dec 10 2015

%Y Cf. A000010, A097945.

%K nonn

%O 1,2

%A _Jeffrey Shallit_, Dec 04 2015