OFFSET
1,2
COMMENTS
Subsequence of A006899: all terms are either powers of 2 or of 3.
Najman improves an algorithm of Bauer & Bennett for computing the function that measures the minimal gap size f(k) in the sequence of integers at least one of whose prime factors exceeds k. This allows us to compute values of f(k) for larger k and obtain new values of f(k). - Jonathan Vos Post, Aug 18 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..21
M. Bauer and M. A. Bennett, Prime factors of consecutive integers, Mathematics of Computation 77 (2008), pp. 2455-2459.
Charles R Greathouse IV, Illustration of n, a(n) for n = 1..33
Filip Najman, Large strings of consecutive smooth integers, Aug 18, 2011
MATHEMATICA
smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j - 1]^Take[aa, j - 1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; sn = smoothNumbers[3, 10^100]; Reap[For[i = 1, i <= Length[sn] - 1, i++, If[CoprimeQ[sn[[i]], sn[[i + 1]]], Sow[sn[[i]]]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Charles R Greathouse IV and Reinhard Zumkeller, Mar 01 2011
STATUS
approved