login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186927
Lesser of two consecutive 3-smooth numbers having no common divisors.
4
1, 2, 3, 8, 27, 243, 2048, 524288, 129140163, 68630377364883, 36472996377170786403, 19342813113834066795298816, 706965049015104706497203195837614914543357369, 13703277223523221219433362313025801636536040755174924956117940937101787
OFFSET
1,2
COMMENTS
a(n) = A003586(A186771(n)); A186928(n) = A003586(A186771(n) + 1).
Subsequence of A006899: all terms are either powers of 2 or of 3.
Najman improves an algorithm of Bauer & Bennett for computing the function that measures the minimal gap size f(k) in the sequence of integers at least one of whose prime factors exceeds k. This allows us to compute values of f(k) for larger k and obtain new values of f(k). - Jonathan Vos Post, Aug 18 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..21
M. Bauer and M. A. Bennett, Prime factors of consecutive integers, Mathematics of Computation 77 (2008), pp. 2455-2459.
Charles R Greathouse IV, Illustration of n, a(n) for n = 1..33
MATHEMATICA
smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j - 1]^Take[aa, j - 1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; sn = smoothNumbers[3, 10^100]; Reap[For[i = 1, i <= Length[sn] - 1, i++, If[CoprimeQ[sn[[i]], sn[[i + 1]]], Sow[sn[[i]]]]]][[2, 1]] (* Jean-François Alcover, Nov 11 2016 *)
CROSSREFS
Cf. A186711.
Sequence in context: A080568 A091339 A006277 * A177010 A300484 A004106
KEYWORD
nonn
STATUS
approved