login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186929
Number of squarefree composite integers greater than or equal to n whose proper divisors are all less than n.
1
0, 0, 0, 1, 1, 3, 2, 5, 5, 5, 4, 8, 8, 13, 12, 12, 12, 18, 18, 25, 25, 25, 24, 32, 32, 32, 31, 31, 31, 40, 39, 49, 49, 49, 48, 49, 49, 60, 59, 59, 59, 71, 70, 83, 83, 83, 82, 96, 96, 96, 96, 96, 96, 111, 111, 112, 112, 112, 111, 127, 127, 144, 143, 143, 143, 144, 143, 161, 161, 161, 160
OFFSET
1,6
LINKS
FORMULA
a(n+1) = a(n)+b(n)(c(n)+d(n)), where b(n) is 1 if n is squarefree, 0 otherwise (sequence A008966), c(n) is 1 if n is composite, 0 otherwise (sequence A066247), and d(n) is the number of primes less than the minimum prime factor of n. Since d(2n)=0 for all n we see that a(2n+1)=a(2n)+b(2n)c(2n). Taking f(n) to represent sequence A038802 we have a(2n)=a(2n-1)+b(2n-1)(c(2n-1)+f(n-1)).
EXAMPLE
For n=6 the only squarefree composite integers greater than or equal to 6 all of whose proper divisors are all less than 6 are 6, 10 and 15. Since there are 3 such integers, a(6)=3.
MATHEMATICA
Join[{0}, Table[Length[Select[Range[n, n^2], SquareFreeQ[#] && ! PrimeQ[#] && Divisors[#][[-2]] < n &]], {n, 2, 100}]] (* T. D. Noe, Mar 01 2011 *)
CROSSREFS
Cf. A182843.
Sequence in context: A375920 A141297 A303917 * A223538 A059319 A196438
KEYWORD
nonn
AUTHOR
Fintan Costello, Mar 01 2011
EXTENSIONS
more
STATUS
approved