login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A186926
Maximal number of isosceles right triangles in a set of n points in the plane.
2
1, 4, 8, 11, 15, 20, 28, 35, 43, 52, 64, 74, 85, 97, 112, 124, 139, 156, 176, 192, 210, 229, 252, 271, 291, 314, 338, 363, 389, 417, 448, 473, 501, 531, 564, 594, 626, 659, 696, 728, 763, 799, 836, 874, 914, 955, 1000, 1038
OFFSET
3,2
COMMENTS
The values for n >= 15 are only conjectural.
LINKS
Bernardo M. Abrego, Silvia Fernandez-Merchant and David B. Roberts, On the maximum number of isosceles right triangles in a finite point set, arXiv:1102.5347 [math.CO], 2011. Also in Involve, 4:1 (2011), 27-42.
P. Erdős and G. Purdy, Some extremal problems in geometry, Journal of Combinatorial Theory 10 (1971), 246-252.
P. Erdős and G. Purdy, Some extremal problems in geometry III, Proc. 6th Southeastern Conference in Combinatorics, Graph Theory and Comp. (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 291-308. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975.
P. Erdős and G. Purdy, Some extremal problems in geometry IV., Proc. 7th Southeastern Conference in Combinatorics, Graph Theory and Comp. (Louisiana State Univ., Baton Rouge, La., 1976), pp. 3.
Sascha Kurz, Plane point sets with many squares or isosceles right triangles, arXiv:2112.12716 [math.CO], 2021.
CROSSREFS
Sequence in context: A311053 A311054 A311055 * A311056 A311057 A054736
KEYWORD
nonn,hard
AUTHOR
Jonathan Vos Post, Mar 01 2011
EXTENSIONS
Edited by N. J. A. Sloane, Mar 04 2011
More terms from Sascha Kurz, Jan 14 2022
STATUS
approved