The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186924 Expansion of (phi(-q^3) / phi(-q))^2 in powers of q where phi is a Ramanujan theta function. 6
 1, 4, 12, 28, 60, 120, 228, 416, 732, 1252, 2088, 3408, 5460, 8600, 13344, 20424, 30876, 46152, 68268, 100016, 145224, 209120, 298800, 423840, 597108, 835804, 1162824, 1608508, 2212896, 3028632, 4124664, 5590976, 7544604, 10137264, 13565016 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Euler transform of period 6 sequence [ 4, 2, 0, 2, 4, 0, ...]. Expansion of (eta(q^2) * eta(q^3)^2 / (eta(q)^2 * eta(q^6)))^2 in powers of q. G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A058487. Convolution square of A098151. a(n) = 4 * A187100(n) unless n=0. Convolution inverse of A217771. - Michael Somos, Sep 05 2015 a(n) ~ exp(2*Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015 EXAMPLE G.f. = 1 + 4*q + 12*q^2 + 28*q^3 + 60*q^4 + 120*q^5 + 228*q^6 + 416*q^7 + 732*q^8 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^3]^2 / EllipticTheta[ 4, 0, q]^2, {q, 0, n}]; (* Michael Somos, Sep 05 2015 *) nmax = 50; CoefficientList[Series[Product[((1-x^(2*k)) * (1-x^(3*k))^2 / ((1-x^k)^2 * (1-x^(6*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^6 + A)))^2, n))}; CROSSREFS Cf. A058487, A098151, A187100, A217771. Sequence in context: A356728 A079089 A182705 * A261320 A179023 A321690 Adjacent sequences: A186921 A186922 A186923 * A186925 A186926 A186927 KEYWORD nonn AUTHOR Michael Somos, Mar 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 16:28 EDT 2023. Contains 365713 sequences. (Running on oeis4.)