login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217771
Expansion of (phi(-x) / phi(-x^3))^2 in powers of x where phi() is a Ramanujan theta function.
4
1, -4, 4, 4, -12, 8, 12, -32, 20, 28, -72, 48, 60, -152, 96, 120, -300, 184, 228, -560, 344, 416, -1008, 608, 732, -1756, 1048, 1252, -2976, 1768, 2088, -4928, 2900, 3408, -7992, 4672, 5460, -12728, 7408, 8600, -19944, 11544, 13344, -30800, 17744, 20424
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^4 * eta(q^6)^2 / (eta(q^2)^2 * eta(q^3)^4) in powers of q.
Euler transform of period 6 sequence [ -4, -2, 0, -2, -4, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + u) * (u + v^2) - 4 * u.
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (3 + u * v)^2 - v * (3*u + v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A217786.
a(n) = - 4 * A123649(n) unless n=0.
Convolution inverse of A186924. Convolution square of A139137.
EXAMPLE
G.f. = 1 - 4*x + 4*x^2 + 4*x^3 - 12*x^4 + 8*x^5 + 12*x^6 - 32*x^7 + 20*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2 / EllipticTheta[ 4, 0, q^3]^2, {q, 0, n}]; (* Michael Somos, Mar 24 2013 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A)^4), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 24 2013
STATUS
approved