login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217770
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
6
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 1, 5, 10, 10, 4, 0, 0, 6, 15, 20, 14, 0, 0, 0, 6, 21, 35, 34, 14, 0, 0, 0, 0, 27, 56, 69, 48, 0, 0, 0, 0, 0, 27, 83, 125, 117, 48, 0, 0, 0, 0, 0, 0, 110, 208, 242, 165, 0, 0, 0, 0, 0, 0, 0, 110, 318, 450, 407, 165
OFFSET
0,5
COMMENTS
A hexagon arithmetic of E. Lucas.
FORMULA
T(n,n+4) = T(n,n+5) = A094788(n+2).
T(n,n+3) = A217783(n).
T(n,n+2) = A217779(n).
T(n,n+1) = A081567(n).
T(n,n) = A217782(n).
T(n+1,n) = A217778(n).
T(n+3,n) = T(n+2,n) = A094667(n+1).
Sum(T(n-k,k), k=0..n) = A217777(n).
EXAMPLE
Square array begins:
n=0: 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
n=1: 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, ...
n=2: 1, 3, 6, 10, 15, 21, 27, 27, 0, 0, 0, 0, ...
n=3: 1, 4, 10, 20, 35, 56, 83, 110, 110, 0, 0, 0, ...
n=4: 0, 4, 14, 34, 69, 125, 208, 318, 428, 428, 0, 0, ...
n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...
...
Square array, read by rows, with 0 omitted:
...1, 1, 1, 1, 1, 1
...1, 2, 3, 4, 5, 6, 6
...1, 3, 6, 10, 15, 21, 27, 27
...1, 4, 10, 20, 35, 56, 83, 110, 110
...4, 14, 34, 69, 125, 208, 318, 428, 428
..14, 48, 117, 242, 450, 768, 1196, 1624, 1624
..48, 165, 407, 857, 1625, 2821, 4445, 6069, 6069
.165, 572, 1429, 3054, 5875, 10320, 16389, 22458, 22458
.572, 2001, 5055, 10930, 21250, 37639, 60097, 82555, 82555
2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082
...
Triangle begins:
1
1, 1
1, 2, 1
1, 3, 3, 1
1, 4, 6, 4, 0
1, 5, 10, 10, 4, 0
0, 6, 15, 20, 14, 0, 0
0, 6, 21, 35, 34, 14, 0, 0
...
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 24 2013
STATUS
approved