login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
6

%I #16 Apr 05 2013 12:27:01

%S 1,1,1,1,2,1,1,3,3,1,1,4,6,4,0,1,5,10,10,4,0,0,6,15,20,14,0,0,0,6,21,

%T 35,34,14,0,0,0,0,27,56,69,48,0,0,0,0,0,27,83,125,117,48,0,0,0,0,0,0,

%U 110,208,242,165,0,0,0,0,0,0,0,110,318,450,407,165

%N Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=4 or if k-n >= 6, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

%C A hexagon arithmetic of E. Lucas.

%F T(n,n+4) = T(n,n+5) = A094788(n+2).

%F T(n,n+3) = A217783(n).

%F T(n,n+2) = A217779(n).

%F T(n,n+1) = A081567(n).

%F T(n,n) = A217782(n).

%F T(n+1,n) = A217778(n).

%F T(n+3,n) = T(n+2,n) = A094667(n+1).

%F Sum(T(n-k,k), k=0..n) = A217777(n).

%e Square array begins:

%e n=0: 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...

%e n=1: 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, ...

%e n=2: 1, 3, 6, 10, 15, 21, 27, 27, 0, 0, 0, 0, ...

%e n=3: 1, 4, 10, 20, 35, 56, 83, 110, 110, 0, 0, 0, ...

%e n=4: 0, 4, 14, 34, 69, 125, 208, 318, 428, 428, 0, 0, ...

%e n=5: 0, 0, 14, 48, 117, 242, 450, 768, 1196, 1624, 1624, 0, ...

%e ...

%e Square array, read by rows, with 0 omitted:

%e ...1, 1, 1, 1, 1, 1

%e ...1, 2, 3, 4, 5, 6, 6

%e ...1, 3, 6, 10, 15, 21, 27, 27

%e ...1, 4, 10, 20, 35, 56, 83, 110, 110

%e ...4, 14, 34, 69, 125, 208, 318, 428, 428

%e ..14, 48, 117, 242, 450, 768, 1196, 1624, 1624

%e ..48, 165, 407, 857, 1625, 2821, 4445, 6069, 6069

%e .165, 572, 1429, 3054, 5875, 10320, 16389, 22458, 22458

%e .572, 2001, 5055, 10930, 21250, 37639, 60097, 82555, 82555

%e 2001, 7056, 17986, 39236, 76875, 136972, 219527, 302082, 302082

%e ...

%e Triangle begins:

%e 1

%e 1, 1

%e 1, 2, 1

%e 1, 3, 3, 1

%e 1, 4, 6, 4, 0

%e 1, 5, 10, 10, 4, 0

%e 0, 6, 15, 20, 14, 0, 0

%e 0, 6, 21, 35, 34, 14, 0, 0

%e ...

%Y Cf. Similar sequences: A214846, A216054, A216201, A216210, A216216, A216218, A216219, A216220, A216226, A216228, A216229, A216230, A216232, A216235, A216236, A216238, A217257, A217315, A217593, A217765.

%K nonn,tabl

%O 0,5

%A _Philippe Deléham_, Mar 24 2013