login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217772
a(n) = ((p+1)*(3p)!/((2p-1)!*(p+1)!*2p) - 3)/(3p^3), where p is the n-th prime.
2
1, 8, 113, 48469, 1232351, 1002175798, 30956114561, 32956274508457, 1386101220044940571, 50017672586399947073, 2548160990547719392420658, 3694160975065765801289789930, 142486973648670437070915061157
OFFSET
2,2
COMMENTS
This sequence is based on Gary Detlefs's conjecture, which he posted as a comment to A005809. His conjecture is equivalent to the conjecture that the Diophantine equation ((n+1)*(3*n)!/((2*n-1)!*(n+1)!*2*n)-3)/n^3 = m has integer solutions m for all odd primes n.
Additionally I conjecture that all m are divisible by 3, therefore terms of this sequence a(n) = m/3.
It is also notable that for quite a few values of n (2, 3, 4, 5, 6, 7, 17, 19, 21, 22, 23, 24, 25, 26, 35, 39, 43, ...) a(n+1) = a(n) mod 7.
The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=3, j=1 and n>=2. - Alexander R. Povolotsky, Apr 18 2013
For n>=3 and k>=2 ((binomial(k*p,p)-k)/p^3)/k is an integer. For k=2 this is the Wolstenholme quotient (A034602) and for k=3 the current sequence. - Peter Luschny, Feb 09 2016
FORMULA
a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j))/(k*prime(n)^3) for k=3, j=1 and n>=2 (conjectured). - Alexander R. Povolotsky, Apr 18 2013
MAPLE
WQ := proc(n, k) local p; p := ithprime(n); ((binomial(k*p, p)-k)/p^3)/k end:
seq(WQ(n, 3), n=2..14); # Peter Luschny, Feb 09 2016
PROG
(PARI) a(n)=my(p=prime(n)); (binomial(3*p, p+1)*(p+1)/(2*p)-3)/(3*p^3) \\ Charles R Greathouse IV, Mar 26 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved