login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217772 a(n) = ((p+1)*(3p)!/((2p-1)!*(p+1)!*2p) - 3)/(3p^3), where p is the n-th prime. 2
1, 8, 113, 48469, 1232351, 1002175798, 30956114561, 32956274508457, 1386101220044940571, 50017672586399947073, 2548160990547719392420658, 3694160975065765801289789930, 142486973648670437070915061157 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

This sequence is based on Gary Detlefs's conjecture, which he posted as a comment to A005809. His conjecture is equivalent to the conjecture that the Diophantine equation ((n+1)*(3*n)!/((2*n-1)!*(n+1)!*2*n)-3)/n^3 = m has integer solutions m for all odd primes n.

Additionally I conjecture that all m are divisible by 3, therefore terms of this sequence a(n) = m/3.

It is also notable that for quite a few values of n (2, 3, 4, 5, 6, 7, 17, 19, 21, 22, 23, 24, 25, 26, 35, 39, 43, ...) a(n+1) = a(n) mod 7.

The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=3, j=1 and n>=2. - Alexander R. Povolotsky, Apr 18 2013

For n>=3 and k>=2 ((binomial(k*p,p)-k)/p^3)/k is an integer. For k=2 this is the Wolstenholme quotient (A034602) and for k=3 the current sequence. - Peter Luschny, Feb 09 2016

LINKS

Table of n, a(n) for n=2..14.

FORMULA

a(n) = ((binomial (j*k*prime(n), j*prime(n)) - binomial(k*j, j))/(k*prime(n)^3) for k=3, j=1 and n>=2 (conjectured). - Alexander R. Povolotsky, Apr 18 2013

MAPLE

WQ := proc(n, k) local p; p := ithprime(n); ((binomial(k*p, p)-k)/p^3)/k end:

seq(WQ(n, 3), n=2..14); # Peter Luschny, Feb 09 2016

PROG

(PARI) a(n)=my(p=prime(n)); (binomial(3*p, p+1)*(p+1)/(2*p)-3)/(3*p^3) \\ Charles R Greathouse IV, Mar 26 2013

CROSSREFS

Cf. A005809, A034602, A223886.

Sequence in context: A092084 A099715 A023814 * A062126 A222520 A220635

Adjacent sequences:  A217769 A217770 A217771 * A217773 A217774 A217775

KEYWORD

nonn

AUTHOR

Alexander R. Povolotsky, Mar 24 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 11:55 EDT 2021. Contains 343821 sequences. (Running on oeis4.)