login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217775
a(n) = n*(n+1) + (n+2)*(n+3) + (n+4)*(n+5).
2
26, 44, 68, 98, 134, 176, 224, 278, 338, 404, 476, 554, 638, 728, 824, 926, 1034, 1148, 1268, 1394, 1526, 1664, 1808, 1958, 2114, 2276, 2444, 2618, 2798, 2984, 3176, 3374, 3578, 3788, 4004, 4226, 4454, 4688, 4928, 5174, 5426, 5684, 5948, 6218, 6494, 6776, 7064
OFFSET
0,1
FORMULA
G.f.: 2*(13-17*x+7*x^2)/(1-x)^3. - Bruno Berselli, Mar 29 2013
a(n) = 3*n^2 + 15*n + 26. - Bruno Berselli, Mar 29 2013
E.g.f.: (26 + 18*x + 3*x^2)*exp(x). - G. C. Greubel, Aug 27 2019
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Jan 27 2022
EXAMPLE
a(1) = 1*2 + 3*4 + 5*6 = 2 + 12 + 30 = 44.
MAPLE
seq((3*(2*n+5)^2 + 29)/4, n=0..50); # G. C. Greubel, Aug 27 2019
MATHEMATICA
Table[3n^2+15n+26, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {26, 44, 68}, 50] (* Harvey P. Dale, Oct 09 2018 *)
PROG
(JavaScript)
for (j=0; j<50; j++) {
a=j*(j+1)+(j+2)*(j+3)+(j+4)*(j+5);
document.write(a+", ");
}
(PARI) a(n)=n*(n+1)+(n+2)*(n+3)+(n+4)*(n+5) \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [(3*(2*n+5)^2 + 29)/4: n in [0..50]]; // G. C. Greubel, Aug 27 2019
(Sage) [(3*(2*n+5)^2 + 29)/4 for n in (0..50)] # G. C. Greubel, Aug 27 2019
(GAP) List([0..50], n-> (3*(2*n+5)^2 + 29)/4 ); # G. C. Greubel, Aug 27 2019
CROSSREFS
Cf. A051890 (two pairs), A217776 (4 pairs).
Sequence in context: A280645 A260207 A130771 * A260200 A178100 A357569
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Mar 24 2013
STATUS
approved