The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261321 Expansion of (phi(q) / phi(q^3))^2 in powers of q where phi() is a Ramanujan theta function. 1
 1, 4, 4, -4, -12, -8, 12, 32, 20, -28, -72, -48, 60, 152, 96, -120, -300, -184, 228, 560, 344, -416, -1008, -608, 732, 1756, 1048, -1252, -2976, -1768, 2088, 4928, 2900, -3408, -7992, -4672, 5460, 12728, 7408, -8600, -19944, -11544, 13344, 30800, 17744, -20424 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The generating function is associated with a modular equation of degree 3 and is the multiplier denoted by "m". - Michael Somos, Nov 01 2017 REFERENCES B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 230 Entry 5(iii), g.f. denoted by multiplier m. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q^2)^10 * eta(q^3)^4 * eta(q^12)^4 / (eta(q)^4 * eta(q^4)^4 * eta(q^6)^10) in powers of q. G.f.: (Sum_{k in Z} x^k^2) / (Sum_{k in Z} x^(3*k^2))^2. a(n) = -(1)^n * A217771(n). a(n) = 4 * A187153(n) = 4 * A213265(n) unless n=0. a(2*n) = 4 * A123633(n) = 4 * A128636(n) unless n=0. a(3*n) = -4 * A228447(n) unless n=0. Convolution inverse is A261320. Convolution square of A139137. EXAMPLE G.f. = 1 + 4*x + 4*x^2 - 4*x^3 - 12*x^4 - 8*x^5 + 12*x^6 + 32*x^7 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 3, 0, q^3])^2, {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^3 + A)^4 * eta(x^12 + A)^4 / (eta(x + A)^4 * eta(x^4 + A)^4 * eta(x^6 + A)^10), n))}; CROSSREFS Cf. A123633, A128636, A139137, A187153, A213265, A217771, A228447, A261320. Sequence in context: A267191 A170897 A217771 * A245517 A179526 A098525 Adjacent sequences:  A261318 A261319 A261320 * A261322 A261323 A261324 KEYWORD sign AUTHOR Michael Somos, Aug 14 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)