login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182957
G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} n^n*x^n.
2
1, 1, 3, 17, 151, 1824, 27541, 494997, 10273039, 241217147, 6314907390, 182283959604, 5750796304553, 196865960240416, 7268410972604665, 287920792767378837, 12181570018235995359, 548274960053921957856
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) = Sum_{n>=0} n^n*x^n.
G.f. satisfies: [x^n] A(x)^(n+1)/(n+1) = n^n.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 151*x^4 + 1824*x^5 +...
G.f. satisfies A(x) = G(x/A(x)) where A(x*G(x)) = G(x) begins:
G(x) = 1 + x + 2^2*x^2 + 3^3*x^3 + 4^4*x^4 + 5^5*x^5 + 6^6*x^6 +...
so that:
A(x) = 1 + x/A(x) + 2^2*x^2/A(x)^2 + 3^3*x^3/A(x)^3 + 4^4*x^4/A(x)^4 +...
The coefficients in A(x)^n for n=1..8 begin:
A^1: [(1), 1, 3, 17, 151, 1824, 27541, 494997, ...];
A^2: [1,(2), 7, 40, 345, 4052, 59925, 1061154, ...];
A^3: [1, 3,(12), 70, 591, 6762, 97938, 1707987, ...];
A^4: [1, 4, 18,(108), 899, 10044, 142488, 2446336, ...];
A^5: [1, 5, 25, 155,(1280), 14001, 194620, 3288540, ...];
A^6: [1, 6, 33, 212, 1746,(18750), 255532, 4248630, ...];
A^7: [1, 7, 42, 280, 2310, 24423,(326592), 5342541, ...];
A^8: [1, 8, 52, 360, 2986, 31168, 409356, (6588344), ...]; ...
where the coefficient of x^n in A(x)^(n+1)/(n+1) equals n^n.
PROG
(PARI) {a(n)=polcoeff(x/serreverse(sum(m=1, n+1, (m-1)^(m-1)*x^m)+x^2*O(x^n)), n)}
CROSSREFS
Sequence in context: A286345 A303063 A209305 * A307375 A007767 A075820
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2010
STATUS
approved