login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180749
G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (n+1)^n*x^n.
4
1, 2, 5, 26, 231, 2844, 43854, 803578, 16960731, 404010692, 10705681566, 312189558548, 9933838621998, 342530711507568, 12724338381577576, 506700249728722586, 21535304484380633171, 973107015782753948460
OFFSET
0,2
LINKS
FORMULA
G.f. satisfies: [x^n] A(x)^(n+1) = (n+1)^(n+1) for n>=0.
G.f. satisfies: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^n*x^n.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 231*x^4 + 2844*x^5 +...
G.f. satisfies A(x) = G(x/A(x)) where A(x*G(x)) = G(x) begins:
G(x) = 1 + 2*x + 3^2*x^2 + 4^3*x^3 + 5^4*x^4 + 6^5*x^5 + 7^6*x^6 +...
so that:
A(x) = 1 + 2*x/A(x) + 3^2*x^2/A(x)^2 + 4^3*x^3/A(x)^3 + 5^4*x^4/A(x)^4 +...
The coefficients in A(x)^n for n=1..8 begin:
A^1: [(1), 2, 5, 26, 231, 2844, 43854, 803578, ...];
A^2: [1, (4), 14, 72, 591, 6872, 102070, 1823024, ...];
A^3: [1, 6, (27), 146, 1140, 12546, 179105, 3112332, ...];
A^4: [1, 8, 44, (256),1954, 20488, 280848, 4740128, ...];
A^5: [1, 10, 65, 410,(3125),31512, 415020, 6793750, ...];
A^6: [1, 12, 90, 616, 4761,(46656), 591638, 9384288, ...];
A^7: [1, 14, 119, 882, 6986, 67214, (823543), 12652712, ...];
A^8: [1, 16, 152, 1216, 9940, 94768, 1126992, (16777216), ...]; ...
where the coefficient of x^n in A(x)^(n+1) equals (n+1)^(n+1).
PROG
(PARI) {a(n)=polcoeff(x/serreverse(x*sum(m=0, n+1, (m+1)^m*x^m)+x^2*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 22 2011
STATUS
approved