Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 22 2018 11:00:02
%S 1,2,5,26,231,2844,43854,803578,16960731,404010692,10705681566,
%T 312189558548,9933838621998,342530711507568,12724338381577576,
%U 506700249728722586,21535304484380633171,973107015782753948460
%N G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (n+1)^n*x^n.
%H Paul D. Hanna, <a href="/A180749/b180749.txt">Table of n, a(n) for n = 0..300</a>
%F G.f. satisfies: [x^n] A(x)^(n+1) = (n+1)^(n+1) for n>=0.
%F G.f. satisfies: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) = Sum_{n>=0} (n+1)^n*x^n.
%e G.f.: A(x) = 1 + 2*x + 5*x^2 + 26*x^3 + 231*x^4 + 2844*x^5 +...
%e G.f. satisfies A(x) = G(x/A(x)) where A(x*G(x)) = G(x) begins:
%e G(x) = 1 + 2*x + 3^2*x^2 + 4^3*x^3 + 5^4*x^4 + 6^5*x^5 + 7^6*x^6 +...
%e so that:
%e A(x) = 1 + 2*x/A(x) + 3^2*x^2/A(x)^2 + 4^3*x^3/A(x)^3 + 5^4*x^4/A(x)^4 +...
%e The coefficients in A(x)^n for n=1..8 begin:
%e A^1: [(1), 2, 5, 26, 231, 2844, 43854, 803578, ...];
%e A^2: [1, (4), 14, 72, 591, 6872, 102070, 1823024, ...];
%e A^3: [1, 6, (27), 146, 1140, 12546, 179105, 3112332, ...];
%e A^4: [1, 8, 44, (256),1954, 20488, 280848, 4740128, ...];
%e A^5: [1, 10, 65, 410,(3125),31512, 415020, 6793750, ...];
%e A^6: [1, 12, 90, 616, 4761,(46656), 591638, 9384288, ...];
%e A^7: [1, 14, 119, 882, 6986, 67214, (823543), 12652712, ...];
%e A^8: [1, 16, 152, 1216, 9940, 94768, 1126992, (16777216), ...]; ...
%e where the coefficient of x^n in A(x)^(n+1) equals (n+1)^(n+1).
%o (PARI) {a(n)=polcoeff(x/serreverse(x*sum(m=0,n+1,(m+1)^m*x^m)+x^2*O(x^n)),n)}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A182957, A180747, A242749.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jan 22 2011