login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182958
G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} n!^2*x^n.
1
1, 1, 3, 26, 435, 11454, 429982, 21731604, 1422610371, 117184594070, 11870433500970, 1451034234272556, 210686605349115246, 35851934993572153260, 7068013569547157285340, 1598270770810393333641640
OFFSET
0,3
FORMULA
G.f. satisfies: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) = Sum_{n>=0} n!^2*x^n.
G.f. satisfies: [x^n] A(x)^(n+1)/(n+1) = n!^2.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 26*x^3 + 435*x^4 + 11454*x^5 +...
G.f. satisfies A(x) = G(x/A(x)) where A(x*G(x)) = G(x) begins:
G(x) = 1 + x + 2!^2*x^2 + 3!^2*x^3 + 4!^2*x^4 + 5!^2*x^5 +...
so that:
A(x) = 1 + x/A(x) + 2!^2*x^2/A(x)^2 + 3!^2*x^3/A(x)^3 + 4!^2*x^4/A(x)^4 +...
PROG
(PARI) {a(n)=polcoeff(x/serreverse(sum(m=1, n+1, (m-1)!^2*x^m)+x^2*O(x^n)), n)}
CROSSREFS
Sequence in context: A122949 A305113 A251664 * A174423 A321183 A274778
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 31 2010
STATUS
approved