login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182958 G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} n!^2*x^n. 1
1, 1, 3, 26, 435, 11454, 429982, 21731604, 1422610371, 117184594070, 11870433500970, 1451034234272556, 210686605349115246, 35851934993572153260, 7068013569547157285340, 1598270770810393333641640 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..15.

FORMULA

G.f. satisfies: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) = Sum_{n>=0} n!^2*x^n.

G.f. satisfies: [x^n] A(x)^(n+1)/(n+1) = n!^2.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 26*x^3 + 435*x^4 + 11454*x^5 +...

G.f. satisfies A(x) = G(x/A(x)) where A(x*G(x)) = G(x) begins:

G(x) = 1 + x + 2!^2*x^2 + 3!^2*x^3 + 4!^2*x^4 + 5!^2*x^5 +...

so that:

A(x) = 1 + x/A(x) + 2!^2*x^2/A(x)^2 + 3!^2*x^3/A(x)^3 + 4!^2*x^4/A(x)^4 +...

PROG

(PARI) {a(n)=polcoeff(x/serreverse(sum(m=1, n+1, (m-1)!^2*x^m)+x^2*O(x^n)), n)}

CROSSREFS

Sequence in context: A206402 A122949 A251664 * A174423 A274778 A049088

Adjacent sequences:  A182955 A182956 A182957 * A182959 A182960 A182961

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 31 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 2 17:24 EST 2016. Contains 278682 sequences.